鞠 武,申辉林,杨 宏,等. 准噶尔盆地砾岩油藏水淹层的测井评价方法研究. 地球物理学进展,2009,24(3):974~980,DOI: 10.3969/j. issn. 1004-2903. 2009. 03. 021.

Ju W, Shen H L, Yang H. et al. Study on the evaluation of watered-out zones in the conglomerate reservoir with logging information in the Junggar Basin. Progress in Geophys. (in Chinese), 2009, 24(3); 974~980, DOI: 10. 3969/j. issn. 1004-2903. 2009. 03. 021.

准噶尔盆地砾岩油藏水淹层的测井评价方法研究

鞠 武^{1,2}, 申辉林³, 杨 宏⁴, 韩学辉³

(1. 成都理工大学能源学院,成都 610059; 2. 胜利油田东辛采油厂,东营 257094;
3. 中国石油大学(华东)地球资源与信息学院,东营 257061; 4. 西部钻探工程有限公司测井公司,克拉玛依 834000)

摘 要 基于对准噶尔盆地某砾岩油藏的淡水水淹机理的实验认识,考察了砾岩油藏水淹层的测井响应特征,形成 了一套定性识别水淹层和划分水淹级别的方法.在该基础上,按照"岩心刻度测井"的原则,统计建立了一套适用于该 砾岩油藏淡水水淹层的测井评价方法.该方法在7个区块17口井的测井解释结果表明,水淹级别按6级划分的解释 符合率达85%左右.

关键词 砾岩油藏,淡水水淹层,测井评价 DOI:10.3969/j.issn.1004-2903.2009.03.021

中图分类号 P631

文献标识码 A

Study on the evaluation of watered-out zones in the conglomerate reservoir with logging information in the Junggar Basin

JU Wu^{1,2}, SHEN Hui-lin³, YANG Hong⁴, HAN Xue-hui³

(1. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China;

2. Dongxin Oil Production Factory of Shengli Oilfield, Dongying 257094, China;

3. Faculty of Earth Resources and Information, China University of Petroleum, Dongying 257061, China;

4. Well Logging Company, West Drilling Engineering Corporation of CNPC, Kelamay 834000, China)

Abstract Based on the knowledge of freshwater flooding mechanism of the conglomerate reservoir in the X Oil Field of Junggar Basin, the characteristics of well logging information are examined. A qualitative method is set up to identify the watered-out zone and evaluate the flooding level. Further, in accordance with the principle of "core analysis scale well logging ", a set of statistical models are set up for the quantitative evaluation of freshwater watered-out zones in the conglomerate reservoir in the X Oil Field of the Junggar Basin. The method is applied to interpret the well logging data of the 20 wells in 7 areas. The result shows that six flooding levels are made off and the accuracy is about 85%.

Keywords conglomerate reservoir, watered-out zone, flooding mechanism, well logging interpretation

0 引 言

在准噶尔盆地某砾岩油藏在不同淡水水淹时期 的特征及水淹机理研究中发现,随水淹过程深入,储 层的泥质、孔隙度、渗透率、混合液电阻率、产水率和 束缚水饱和度等参数都有一定程度的变化.其中,混 合液电阻率、含水饱和度、产水率的估算是油水层识 别以及水淹程度评价的核心问题,也是测井评价的 难点.本文借鉴了近年来有关砂岩、砂砾岩水淹层的 测井响应特征分析^[1~3]、水淹层储层参数定量评价、 水淹级别划分^[4~17]以及混合液电阻率确定^[18,20]的 方法和结果,结合该油藏水淹层的地质特点,开发了

收稿日期 2008-11-12; 修回日期 2009-02-22.

作者简介 鞠武,男,1968年生,山东东营人,博士研究生,研究方向为储层地质学.(E-mail:dxcjw@yahoo.com.cn)

适用于该砾岩油藏淡水水淹层的水淹级别的定性识 别方法、储层参数定量评价方法,为应用测井多井解 释方法描述该油藏的剩余油分布特征和规律、合理 制定开发方案提供了依据.

 准噶尔盆地某砾岩油藏水淹层的测井曲 线特征

1.1 自然电位

由于准噶尔盆地某砾岩储层的非均质性,大多 数淡水水淹层都具有局部水淹或水淹不均的特点, 因此水淹后会发生自然电位基线偏移的现象(图 1).基线偏移的主要原因在于油层被水淹以后,原始 地层水矿化度局部受到淡化.自然电位基线偏移的 大小,主要取决于水淹前后地层水矿化度的比值,二 者的比值越大,自然电位基线偏移越大,表明油层水 淹程度越高^[2].这种现象在准噶尔盆地某砾岩油藏 淡水水淹层的表现是:对于正韵律储层,在底部产生 基线偏移,表明下部水淹;对于反韵律储层,自然电 位基线偏移则出现在顶部,表明上部水淹;复合韵律 层则出现阶梯状基线偏移,常发生中部水淹.

1.2 地层电阻率

对准噶尔盆地某砾岩油藏淡水水淹层的统计发现(图1、表1),径向电阻率比值能有效地识别淡水水淹层和水淹级别,增阻侵入(高侵:浅视电阻率 RXO大于深视电阻率 RT,中视电阻率 RI大于深视电阻率 RT)一般是中高水淹层特点,而减阻侵入 (低侵:RT>RI,RT>RXO)则是油层和弱水淹层的特点.

Fig. 1 Characteristics of well-logging response to watered-out zones in well X

表1 准噶尔盆地某砾岩油藏淡水水淹层的电阻率特征

Table1 Characteristics of resistivisity of water-out zones

of conglomerate reservoir in the X Oil Field

of Junggar Basin

水淹级别	油 层	弱水淹层	中水淹层	强水淹
电阻率特征	RT > RI,	RT > RI,	RT>RI,	RI > = RT,
	RI >> RXC	RI > RXO	RI>RXO	<u>RXO</u> >RI

1.3 声波时差

淡水水淹后,水淹不同时期,储层的泥质含量有 变小的趋势,孔隙度有变大的趋势.由于这两种变化 同时存在,并且变化的范围有限,对声速的影响作用 又正好相反,水淹层的岩心分析数据和实际测井曲线 均未反映出油层和水淹层的声波时差的明显差别.

1.4 自然伽马

由于淡水水淹过程中的水洗作用,泥质含量有 所下降.因此在某些孔隙度、渗透率较高的区域或层 段,部分水淹层在自然伽马测井曲线上显示为数值 降低的特征.这是因为注入水水洗油层时,油层中的 粘土矿物和泥质成分被注入水溶解和冲走,使粘土 和泥质含量降低,因而导致自然伽马测井值降低.但 由于泥质含量的下降是有限的,自然伽马幅度的变 化也不明显.

2 准噶尔盆地某砾岩油藏水淹层定性评价 技术

根据该砾岩油藏淡水水淹后的不同程度及其测 并响应特征,将水淹级别划分为6级(表2).

表 2 准噶尔盆地某砾岩水淹层水淹级别评价标准 Table 2 Valuation standard of water-out level of water-out zones in the X Oil Field

of	Junggar	Basin
----	---------	-------

水淹	油层	弱水	中水	较强水	强水	特强水
级别		淹层	淹层	淹层	淹层	淹层
产水率	<10	10~40	40~60	60~80	80~90	>90

根据对地层水电阻率 R_w 和含水饱和度 S_w 变 化有明显反映的深(RT)、中(RI)、浅视电阻率 (RXO)和自然电位(SP)曲线来综合判断水淹层以 及水淹级别是用常规测井资料定性识别水淹层的基 本方法.根据准噶尔盆地某砾岩油藏淡水水淹层电 阻率特征,我们提取了一个水淹层电阻率综合响应 特征参数:WFRT(无量纲),该参数的定义如下:

当RT > RXO和RI > RXO时,

$$WFRT = \frac{RT}{RXO} \cdot \frac{RI}{RXO} \,. \tag{1}$$

当 $RT \leq RXO$ 或 $RI \leq RXO$ 时,

$$WFRT = -\frac{RXO}{RT} \cdot \frac{RXO}{RI}.$$
 (2)

判断水淹层标准如下:

(1)当 WFRT 为正值且很大时,为油层;

(2)当 WFRT 为正值且较大时,为弱水淹层;

(3)当 WFRT 为正值且较小时,为由弱水淹层 到中水淹层的过渡层;

(4)当 WFRT 为负值且其绝对值很大时,为强 水淹层;

(5)当 WFRT 为负值且其绝对值较大时,为由 中水淹层到强水淹层的过渡层;

(6)当 WFRT 为负值且其绝对值较小时,为中 水淹层;

(7)当 WFRT ≈ 1 或 WFRT ≈-1 时,可能为 水层,或者为弱水淹层,或者为中水淹层,此时要根 据实际测井曲线及其它地质信息进行综合评价.判 别的指标,可根据现场资料统计后反复调整确定,用 于水淹层定性识别.

3 准噶尔盆地某砾岩油藏水淹层定量评价 技术

在定性识别水淹层的基础上,选取该砾岩油藏 有系统取心的关键井,开展了比较系统岩心分析工 作,在岩心"深度归位"后,分层位统计建立了水淹层 测井解释的统计模型.

3.1 储层参数

3.1.1 砾岩油藏水淹层的测井解释模型

按岩石物理体积模型,把砾岩油藏看成砾岩骨架、砂岩骨架、泥质和总孔隙度四部分组成,其相对体积分别是 Vgr、Vsd、Vsh和 qc,物质平衡方程为:

$$V_{\rm gr} + V_{\rm sd} + V_{\rm sh} + \varphi_t = 1.$$

考虑到淡水水淹后,地层水混合液是由原生地 层水和注入水两部分组成.由于长期注水开发,注入 水要逐步驱替原生水和油气.随着时间的推移,注入 水将成为可动水的主流,而原生水的饱和度逐步接 近束缚水饱和度.

3.1.2 岩性参数

(1)泥质含量(V_{sh})和粒度中值

在该区使用自然电位、自然伽马和电阻率三种 测井资料求泥质含量,取其最小值.计算公式为:

$$V_{\rm sh} = (2^{\rm GCUR * SH} - 1) / (2^{\rm GCUR} - 1) , \qquad (4)$$

(6)

SH = (SHLG - GMIN)/(GMAX - GMIN), (5) 式中, SHLG 为测井值, GMIN、GMAX 为纯砂岩和 纯泥岩的测井响应值, GCUR 为一区域经验系数. 用 自然伽马和自然电位求泥质含量时,取 GCUR = 3.7; 用电阻率曲线求泥质含量时,取 GCUR = 3.74.

粒度中值 M_a 的计算主要依据其与泥质含量、 密度、深探测电阻率的统计关系:

 $egin{aligned} M_{d} &= 1.51 \pm 0.00013
ho_{b}^{b}/V_{sk}^{4} \ &- 5.93 imes 10^{-4} V_{sk}^{-3} \ &- 2.55
ho_{b} (\mathrm{lg} Rt)^{2} \ &+ 0.004.67 Rt
ho_{b}^{5} \ . \end{aligned}$

(2)研岩含量(V_{gr})

砾岩含量是指砂砾岩骨架中粒径大于 2mm 的 颗粒占的百分比.砾岩含量也反映了岩性信息,特别 是砾岩油藏中,砾岩含量直接影响储层的特性.砾岩 含量是受多参数影响十分严重的参数之一.经实验 研究,经多元统计回归得到砾岩含量的计算公式: $V_{gr} = 2.33(M_d - 1.04 + 1.80 \times 10^{-5} v_{SH}^{-3})^{0.25}$,(7) 式中, M_d 为粒度中值(与自然伽马有关).

3.1.3 物性参数—孔隙度和渗透率

(1) 孔隙度(φ)

实验研究发现,准噶尔盆地某砾岩油藏声波时 差 Δt 和密度 ρ_b 与孔隙度有着良好的关系,统计建立 孔隙度计算模型如下

 $\varphi = 92.76 - 34.57 \cdot \rho_b , \qquad (8)$

$$\varphi = -17.03 + 0.10 \cdot \Delta t . \tag{9}$$

(2)渗透率(k)

因无核磁等测量资料,渗透率由岩心分析数据 建立经验关系如下:

 $\lg k = 8.02 + 7.38 \lg \varphi + 1.88 \lg M_d$

$$-8.28\varphi^2 M_d . \tag{10}$$

(3)相对渗透率

目前,计算油、水相对渗透率常用琼斯方程. 琼 斯方程中水相对渗透率方程是纯水层模型,没有包 含残余油,把它用于油层会带来很大误差. 而且琼斯 方程中的 m、n 值,通常认为变化范围在 2~4 之间, 但实际资料分析表明,m、n 值是与岩性、物性有关 的多元函数关系,变化量常大大超出正常范围. 为 此,我们基于岩心分析数据,统计建立了一组新的油 水相对渗透率解释模型:

$$\begin{split} K_{\rm ro} &= \exp(-3.3 \pm 0.81 K_{\rm o} - 0.14 K_{\rm o}^2) , \ (11) \\ K_{\rm rw} &= \exp(-2.91 - 0.88 K_{\rm w} - 0.14 K_{\rm w}^2) , \ (12) \\ K_{\rm O} &= (1 - S_{\rm w} - S_{\rm or})/(1 - S_{\rm or} - S_{\rm wr}) , \ (13) \end{split}$$

$$K_{\rm w} = (S_{\rm w} - S_{\rm wi}) / (1 - S_{\rm or} - S_{\rm wi}) , \qquad (14)$$

式中, K_{ro}、K_{rw}为油、水相对渗透率, S_{or}、S_w,一地层 残余油和束缚水饱和度.

3.1.4 束缚水饱和度(Swir)和残余油饱和度(Sor)

由岩心分析数据,建立束缚水饱和度测井解释 模型:

$$S_{wtr} = 0.14 + 0.29(\lg \varphi)^{2} + 2.64\varphi(\lg M_{d})^{2} - 5.09\varphi(\lg \varphi)^{2}(\lg M_{d})^{2}, \qquad (15)$$
$$S_{or} = 0.47 - 0.14S_{wt}^{-2} + 0.069S_{wo}^{-3}$$

$$-8.54 * \cdot 10^{-3} S_{w_1}^{-4}.$$
(16)

3.2 含油饱和度

由于水淹过程中,会出现注入水和原生地层水 混合的现象,与 Archie 公式的物理学原型有所差 异.根据孙德明等人的研究成果,提出如下一种计算 淡水水淹层含油饱和度的方法,有:

$$S_{\rm w} = \left[\frac{abR_{\rm wz}S_{\rm wir}^D}{\varphi^m R_I}\right]^{\frac{1}{n+D}},\tag{17}$$

式中, R_{w2} 为水淹层内混合地层水电阻率, R_i 为地层电阻率,D为校正系数.

显然,同 Archie 公式相比,上述公式中增加了 淡化系数 (S_w/S_{wir})^D 因子,用它表示注入淡水对混 合液电阻率 R_{wz} 的影响.

校正系数 D 可由实验确定. 对该油藏,有:

 $D = 0.1074 + 2.7236X - 29.1042X^2$

$$+102.7069X^{3}$$
, (18)

式中, $X = R_{w}/(\varphi \cdot R_w)$. $m \setminus n \setminus a \setminus b$ 参数由淡水 驱岩电实验确定.

3.3 产水率(F_w)

常规的产水率主要由油水两相渗流方程,按下式 计算:

$$F_{\rm w} = \frac{1}{1 + \frac{K_{\rm ro}}{K_{\rm rw}} \cdot \frac{\mu_{\rm w}}{\mu_{\rm o}}},\tag{19}$$

式中, µ_w、µ_o 为油、水在地下状态下的粘度, 由 PVT 取样后分析确定.

4 方法应用效果

应用上述水淹级别的定性识别方法、水淹层参数的定量评价方法,编制了解释程序,对准噶尔盆地 某砾岩油藏7个区块17口井进行了测井评价.评价 后能够给出储层的水淹级别、岩性、物性、含油性以 及产能的基本参数(图2),参数解释精度和符合率 情况见表3、表4.

由表 3 可见,以密闭取心岩心分析的数据为标 准,测井解释储层参数的平均绝对误差为:孔隙度

Table 3 Comparison between logging interpretation and core analysis								
岩心编号	 岩心渗透率/mD	测井渗透率/mD	岩心孔隙度/%	测井孔隙度/%	岩心含水饱和度/%	测井含水饱和度/%		
X916	7.222	18.801	16. 81	17.35	49.7	44.1		
X 917	27.593	11.394	18.95	17.75	43.6	46.1		
X918	11.080	6.130	13.21	12.82	53.3	58.2		
X 919	15.360	8.720	14.28	15.23	55.6	57.36		
X920	8.329	4.260	12.40	13.12	49.07	44.80		
X 921	15.383	29.60	15.48	14.59	48.7	52.1		
X922	5.618	8.440	10.15	11.735	55.1	59.4		
Y98A	0,960	5.210	14.99	13.94	54.9	59.1		
Y99A	1.125	4.360	9.05	10.08	47.56	50,23		
Y100A	8.760	3.287	11.26	10.58	56.70	60.23		
Y101A	58.762	42.701	15.64	16.45	56.7	58.0		
Y102A	43.422	34.444	12.92	13.50	45.6	42.3		
Y103A	31.257	48.420	13.24	12.15	48.2	45.3		
Y105A	24.732	27.059	10.01	9.71	56.2	61.1		
绝对误差	叁 8.42		0.	0. 84		3. 54		

亡兴之人长数提升以入长来

	Table 4	Comparison be	tween loggin	g interpretati	ion and test		
层位 井段(m)	解释结论			生产测试结论			
	开段(m)	产水率(%)	结论	产油 (t)	产水(t)	含水 (%)	一 符合情况
Jıb	X62.0-X73.0	10.3	弱水淹层	7.7	0.8	9.4	符合
Jıb	X26. 0-X830. 0	56.7	中水淹层	9.5	11.2	54.1	符合
$\mathbf{J}_1\mathbf{b}$	X96. 5 – X 10. 0	9.5	弱水淹层	18.0	2.0	10.0	符合
Jıb	X61.0-X65.0	11.1	弱水淹层	10.8	3.0	21.7	符合
T 1	X66. 0 - X 73. 0	13.4	편신풍덕	24.0	0.0	200	符合
JID	X79.0-X87.0	15.7	弱水淹层	34.8	9.2	20.9	符合
T_2k_1	X65.0X76.5	81.3	强水淹层	1.0	7.1	87.7	符合
T_2k_1	X54.0-X76.0	86.9	强水淹层	3.8	15.5	80.3	符合
$T_2 \mathbf{k}_1$	X56.0-X78.5	85.5	强水淹层	2.5	12.7	83.6	符合
$T_2 k_1$	X55.0-X72.9	82.5	强水淹层	4.3	26.4	86.0	符合
$T_2 \mathbf{k}_1$	X55.0-X76.5	88.1	强水淹层	2.3	20.4	89,9	符合
$T_2 \mathbf{k}_1$	X54.5-X74.0	71.0	强水淹层	2.1	3.5	62.5	符合
$T_z \mathbf{k}_1$	X52.5-X72.0	81.1	强水淹层	1.9	10.7	84.9	符合
$T_2 k_1$	X54.5-X75.5	81.3	强水淹层	1.0	6.0	85.7	符合
$T_2 \mathbf{k}_1$	X52.5-X71.5	88.5	强水淹层	3.3	10.4	75.9	不符合

强水淹层

强水淹层

强水淹层

较强水淹层

强水淹层

0.6

8.0

4.2

0.2

0.6

表 4 测井解释结论与生产测试结果对比表

0.84%,渗透率8.42mD,含水饱和度3.54%.结果 表明,在该砾岩油藏高含水期建立的测井解释模型 是合适的,储层参数评价精度能够满足开发方案调 整的需要.

X56.0 - X75.0

X025.0-X044.0

X086.0-X088.0

X80.5-X82.5

X720.0-X723.3

87.7

85.3

65.9

98.2

75.9

由表4可见,以生产测试结论为依据,运用 WFRT 以及定量计算的含水率指标在 7 个区块 17 口 井的水淹级别解释符合率达 85%(左右,能够满足应 用多井资料评价剩余油和开发方案调整的需要.

5 结论与讨论

基于准噶尔盆地某砾岩油藏的淡水水淹层的水 淹机理和测井响应特征分析,结合水淹层测井评价 的客观需要,本文重点讨论了两方面的内容:使用水 淹层电阻率综合响应特征参数 WFRT、产水率作为 标准定性识别水淹层和划分水淹级别的方法;按 "岩心刻度测井"的原则,由岩心分析和常规测井数 据统计建立水淹层参数的测井定量评价方法.经工 程应用效果检验,方法在油区的应用效果比较理想, 能够满足开发调整的需要.

由于目前水淹层的测井资料以常规测井资料为 主,由油藏测井响应特征定性识别水淹层,按"地质 刻度测井"的原则定量评价砾岩油藏水淹层评价思 路和方法基本上能够满足该类储层水淹层的测井评 价需要的.同时,研究方法对其它岩性、物性油藏水 淹层测井评价方法的建立有借鉴意义.

18.7

58.7

10.7

3.9

含油层

参 考 文 献 (References):

[1] 侯连华. 自然电位基线偏移影响因素的实验研究[J]. 石油大学 学报(自然科学版),2001,25(1):93~98.

Hou L H. Influencing factors pf baseline shift amplitude of spomtanfous potential [J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2001, 25(1); 93~98.

96.9

88.0

71.8

96.1

不符合

符合

符合

符合

不符合

- [2] 田中元,穆龙新,孙德明,吕连海.砂砾岩水淹层测井特点及机 理研究[J]. 石油学报,2002,23(6):50~55. Tian Z Y, Mu L X, Sun D M, Lv L H. Logging attributes and mechanism study of grit water-flooding reservoir [J]. ACTA PETROLEI SINICA, 2002, 23(6):50~55.
- [3] 张庆国,鲍志东,那未红,注水开发油田水淹油层测井响应特征 [J]. 大庆石油学院学报,2006,30(4):101~105. Zhang Q G, Bao Z D, Na W H. Characteristics of well-logging Response to water-flooded Reservoir in water-driven Oil Field[J]. Journal of Daqing Petroleum Institute, 2006.30(4):101~105.
- [4] 申辉林,陈清华.孤岛油田中一区水淹层测井资料评价方法 [J]. 石油大学学报(自然科学版),1997,21(4):15~17. Shen H L, Chen Q H. Method for evaluating well logging data of water flooded formations at zhongyi district in gudao oilfield [J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1997, 21(4): 15~17.
- [5] 申辉林,韩清忠,邰子伟,匡立春,杨宏,陈学兴. 测井多井解释 技术在克拉玛依砾岩油藏水淹层评价中的应用[J]. 石油大学 学报(自然科学版), 1998, 22(2): 21~25. Shen H L, Han Q Z, Tai Z W, Kuang L C, Yang H, Chen X

井名 X004 X005 X019 X849 X850 X2001 X2004 X2005 X2006 X2007 X2008 X2009 X2010 X2012

X2013

X7218

X432A

 $T_2 \mathbf{k}_1$

 $T_2 \mathbf{k}_1$

 $T_2 k_1$

 $T_2 \mathbf{k}_1$

3 期

24 卷

X. Application of multiwell logging interpretation techniques to evaluation water flooded zones in KELAMAY conglomerate reservoir[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1998,22(2);21~25.

[6] 侯连华,王京红.水淹层测井评价方法[J].石油学报,1999,20 (3):49~55.

Hou L H, Wang J H. Evaluation of water flooded interval well logging[J]. Acta Petrolei Sinica, 1999, 20(3), 49~55.

[7] 高印军,李才雄,王大兴,孟文建,魏玉梅,陈军,孙德海,水淹层 测井解释技术研究与应用[J],石油勘探与开发,2001,28(5): 42~45.

Gao Y J,Li C X,Wang D X,Meng W J,Wei Y M,Chen J,Sun D H. Well logging interpretation for water flooded zone [J]. Petroleum Exploration and Development, 2001,28(5):42~45.

[8] 宋渝新,张君劼,杨宏,姬嘉琦,董彦喜.综合利用测井资料评 价油气层——以克拉玛依石南油田为例[J].新疆石油地质, 2006,27(1):96~98.

Song Y X, Zhang J J, Yang H, Ji J Q, Dong Y X. Composite application of well log data to evaluation of Oil-Gas Zones--An example of Shinan field, Karamay Oilfield [J]. Xinjiang Petroleum Geology, 2006,27(1):96~98.

- [9] 蔺景龙,张庆国,宋延杰,许少华. 水淹层测井分析[J]. 大庆石 油学院学报, 2001,25(3):25~28.
 Lin J L, Zhang Q G, Song Y J, Xu S H. Water-flooded formation well-logging analysis [J]. Journal of Daqing Petroleum Institute, 2001,(3):25~28.
- [10] 高楚桥,张超谟,肖承文,宋帆. L 油田含水率计算及水淹等 级划分[J]. 测井技术, 2004,28(1):75~77.
 Gao C Q,Zhang C M,Xiao C W,Song F. Watercut calculation and classification of waterflooded grades in L oilfield[J]. Well Logging Technology, 2004,28(1):75~77.
- [11] 章成广,汪中浩,周曲曼. 分形与模糊综合判别新方法识别水 淹层[J]. 石油天然气学报,2007,29(4):87~90.
 Zhang C G, Wang Z H, Zhou Q M. Identification of waterout zones with a new method of fractal and fuzzy synthetic evaluation[J]. Journal of Oil and Gas Technology, 2007,29 (4):87~90.
- [12] 宋子奇,谭成仟,吴少波,杨贵凯,靳晓杰.灰色系统与神经网络技术在水淹层测井评价中的应用[J].石油勘探与开发, 1999,26(3):90~92.
 Song Z Q, Tan C Q, Wu S B, Yang G K, Jin X J. Application of grey system theory and neural network technology to water-out formation logging evaluation [J]. Petroleum Exploration and Development, 1999,26(3):90~92.
- [13] 许少华,刘扬,何新贵、基于过程神经网络的水淹层自动识别

系统[J]. 石油学报,2004,25(4):54~56.

Xu S H, Liu Y, He X G. Automatic identification of waterflooded formation based on process neural network [J]. ACTA PETROLEI SINICA, 2004, 25(4); $54 \sim 56$.

[14] 宋子齐,赵磊,王瑞飞,康立明,陈荣环,白振强.利用常规测井 方法识别划分水淹层[J].西安石油学院学报(自然科学版), 2003,18(6):50~53.

Song Z Q, Zhao L, Wang R F, Kang L M, Chen R H, Bai Z Q. Recognizing watered—out zones by using traditional well logs[J]. Journal of Xi an Petroleum Institute(Natural Science Edition), 2003,18(6):50~53.

- [15] 卢艳,王向公、利用灰色理论定性判别水淹层[J]、江汉石油学院学报,2002,24(4):51~52.
 Lu Y, Wan X G. Water-out zone qualitative discrimination with grey theory[J]. Journal of Jlanghan Petroleum Institute, 2002,24(4):51~52.
- [16] 许增福,吴贵生,王宏伟. 量子神经网络及其在复杂水淹层识别中的应用[J]. 测井技术,2007,31(5):433~437.
 Xu ZF, Wu GS, Wang HW. Quantum neural networks and its application in complex water flooded layer recognition[J]. Well Logging Technology, 2007,31(5):433~437.
- [17] 张斌成,石晓燕,刘瑛,谢志国,张佳琪,李喜莲.水淹层测井综 合解释及水淹特性研究[J]. 测井技术,2005,29(6):545~547. Zhang B C, Shi X Y, Liu Y, Xie Z G, Zhang J Q, Li X L, On conventional log interpretation of water hooded layer and water flooded characteristics[J]. Well Logging Technology, 2005,29(6):545~547.
- [18] 俞军,史謌,王伟男高含水期地层水电阻率求取方法[J].北京
 大学学报(自然科学版),2005.41(4):536~541.
 Yu J,Shi G,Wang W N. Determination of formation water resistivity during the high water-cut Stage [J]. Acta Scientirum Naturalium Universitatis Pekinensis, 2005,41 (4):536~541.
- [19] 杨景强,卢艳,马宏宇,杨青山,刘传平.水淹层地层水电阻率 变化规律研究[J].测井技术,2006,30(3):195~197.
 Yang J Q, Lu Y, Ma H Y, Yang Q S, Liu C P. On variation regularity of resistivity of mixed formation water in waterflooded Zone[J]. Well Logging Technology, 2006,30(3): 195~197.
- [20] 王美珍,俞军.用测井资料确定大庆长垣水淹层混合液电阻率
 [J].大庆石油地质与开发,2007,26(2):120~122.
 Wang M Z, Yu J. Using well logging data to determine resistivity of mixed fluid in Water-flooded layer of Daqing Placanticline[J]. Petroleum Geology & Oilfield Development in Daqing,2007,26(2):120~122.